

Standard Model and Supersymmetric Higgs at CDF

Outline:

PANIC 2005: CDF SM & MSSM Higgs

Current Knowledge of Higgs
CDF searches:
Direct Higgs (1 analysis)
Associative Higgs (3)
MSSM Higgs (2)
Tevatron Discovery potential

Ben Kilminster

Ohio State University

on behalf of CDF collaboration

What we know about Higgs

- Higgs mechanism gives mass to Standard Model particles
- But required Higgs boson not yet discovered!
 - > Therefore, some alternatives to experimentally check:

"Standard Model" (SM)

- Simplest Higgs mechanism possible
- Higgs is 1 particle
 - > H
 - > spin 0
 - electrically neutral
 - interacts with all SM particles
 - more strongly with higher mass particles

"Minimally Supersymmetric Model" (MSSM)

- Next most simplest Higgs mechanism possible
- Higgs are 5 particles
 - ▶ h, A, H, H+, H-
 - > spin 0
 - electrically: -1,0, +1
 - interact with all SM particles
 - more strongly with higher mass particles
 - \square enhancement to down-type quarks from tan β parameter (relates to Vacuum Expec. Val.)

SM not wrong yet!

MSSM popular step toward unified theory

Higgs Production and Decay

(pp collisions)

SUSY production and decay

- > 105 unknown parameters make this tough
 - $tan \beta parameter most important at$ Tevatron
 - high tan β means Higgses (+1, 0, 1) couple to τ

Example: H^+ branching ratios for $m_H > m_+$

Expected Higgs mass (& type=SM or MSSM)

SM: From electroweak fits with new

CDF/D0 Run I/II top mass 172.7 + 2.9

 $M_{\rm H}$ < 186 GeV/c² @ 95% C.L.

MSSM: top mass, W mass makes MSSM favorable

Search for SM pp \rightarrow W* \rightarrow WH \rightarrow Ivbb

Strategy:

high P_T lepton + missing energy + 2 jets

- Separate signal from W+heavy flavor and W+light flavor backgrounds
- Use b-tagging algorithm
- ➤ Requires MC estimations and excellent knowledge of "mistag" rate of light flavor jets

Results:

- Examine dijet mass for resonance
- Consistent with SM
- •Set a limit on Higgs production : $\sigma(M_H = 115 \text{ GeV}) < 8.6 \text{ pb}$

W+light flavor estimated from number of tags with negative lifetime

Search for SM pp \rightarrow Z* \rightarrow ZH \rightarrow I+I-bb

Strategy:

- Identify Z boson decaying to two high Pt leptons + 2 or 3 jets (w/b-tag)
- Lepton ID cuts into acceptance
- Use Artificial Neural Net (NN)
 to separate signal with main bkg
 of Z+jets

Results:

- NN improves S/B resulting in effective 1.6 increase in luminosity
- Expect result with 1 fb⁻¹ data

Search for SM pp \rightarrow Z* \rightarrow ZH \rightarrow vvbb

Strategy:

- Z decays to neutrinos
- Search for large missing transverse energy (MET > 70 GeV) with 2 jets, 1 b-tag
- Need to model MET well
- Remove events where MET aligns with jet (mismeasured QCD dijet)

Results:

- Consistent with SM
 - Set a limit on Higgs production
 - σ (M_H=115 GeV) < 5 pb

Scale MC to reproduce MET in data

Search for SM pp $\rightarrow H\rightarrow W^+W^-\rightarrow I^+I^-\nu\nu$

•Strategy:

- Most sensitive channel to high mass Higgs
- Search for 2 high P_T leptons and MET
- Angular correlations between leptons different than WW
 BKG since H is scalar

- Consistent with SM
 - 13.8 + 1.2 pred. bkg
 - 0.58 +- 0.04 pred. sig
 - 16 in data
 - σ (M_H=160 GeV) < 3.2 pb

Summary of SM Higgs searches

2003 Sensitivity Projections

- $m_{H} = 115 \, GeV$
 - ~ 2 fb-1 for exclusion (if not there)
 - \sim 4 fb⁻¹ for m_H = 115 3σ evidence
- · Assumes:
 - all Higgs channels combined at both CDF and DO
 - realistic data, no systematics
- 8 fb⁻¹ by 2009 is design

2005 Status

- CDF, D0 preliminary results with 200 400 pb⁻¹ data
 - > channels not combined, some missing
 - need factor of 30-40
 - ☐ factor of ~20 from data up to 2009
 - ☐ factor of 2 from CDF/DO combination
- Working on ways to improve sensitivity
 - Neural Nets for everyone! (factor of ~1.7)
 - > Improved jet resolution (1.1 for each 1%)
 - Improved lepton acceptance (> 1.5)

Search for MSSM t→Htb

Strategy:

- > In SM

 - □ W⁺ →I⁺v (1/3), W⁺ →qq (2/3)
- \rightarrow In MSSM (for $M_H < M_t$)
 - \Box $t\rightarrow H^{\dagger}b, t\rightarrow W^{\dagger}b$
 - \Box At high tan β , $H^+ \rightarrow \tau v$
 - □ At low tan β $H^+ \rightarrow cs$

- >No significant excesses or deficits found
- >We can exclude regions of the M_{H+} vs tan β plane for various MSSM scenarios
- Branching ratio limit independent of MSSM scenarios

BR(t→H+b)<0.4 @95%CL for 80 GeV<mH+<160 GeV

 $BR(t\rightarrow H^+b)$

Search for MSSM $A/h \rightarrow \tau^{\dagger}\tau^{-}$

Strategy:

- direct production cross-section (high)
- \triangleright high tan β enhances production of A
- \neg more stable to radiative corrections than A \rightarrow bb
- identify events with two taus

one leptonic: $\tau \rightarrow ev / \mu v$ one hadronic: "narrow" jet

signal

 \neg Cut on sum of transverse (from e/ μ + τ_h) and missing (ν) energy

Results:

- consistent with SM
- exclusion in region of m_{A} vs. tan β

Conclusions

- CDF exploring all SM and MSSM Higgs possibilities
- SM
 - > Direct Higgs production
 - high production cross-section
 - \square $H \rightarrow WW$
 - > Associative higgs production
 - leptons + b jets (+ miss. E.) distinct signature
 - \square WH \rightarrow Iv, ZH \rightarrow vvbb, ZH \rightarrow l†l-bb

Limits will improve with luminosity and smarts!

4 - 8 fb⁻¹ can find us a light Higgs

- MSSM
 - Neutral Higgs
 - \square production cross section enhanced (tan β) ²
 - \triangle $A \rightarrow \tau^+ \tau^-$
 - > Charged Higgs
 - capitalize on knowledge of top
 - \Box $t \rightarrow H^{+} b$

Cutting into allowed MSSM parameter space!

Accelerator Division, CDF, and DO

working together against the clock

BACKUPS

Couplings of MSSM Higgs Bosons Relative to SM

W and Z couplings to H, h are suppressed relative to SM (but the sum of squares of h⁰, H⁰ couplings are the SM coupling). Yukawa couplings (scalar-fermion) can be enhanced

So How Do We Get There??

Luminosity Equivalent $(s/\sqrt{b})^2$

Start with existing channels, add in ideas with latest knowledge of how well they work.

Improvement	WH→lvbb	ZH→vvbb	ZH→llbb
Mass resolution	1.7	1.7	1.7
Continuous b-tag (NN)	1.5	1.5	1.5
Forward b-tag	1.1	1.1	1.1
Forward leptons	1.3	1.0	1.6
Track-only leptons	1.4	1.0	1.6
NN Selection	1.75	1.75	1.0
WH signal in ZH	1.0	2.7	1.0
Product of above	8.9	13.3	7.2
CDF+DØ combination	2.0	2.0	2.0
All combined	17.8	26.6	14.4

Expect a factor of ~10 luminosity improvement per channel, and a factor of 2 from CDF+DØ Combination

Ben Kilminster

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.15 of 12

Sensitivity with Existing CDF Analyses

Cross-Section
times branching
fraction limit
as a multple
of the SM
rate

lvbb vvbb llbb WW WWW As They Are

ELuminosity Thresholds for CDF's Channels Combined

Assumption: Systematic errors scale with $1/\sqrt{\int \mathcal{L}dt}$

All channel's luminosities scaled to 300 pb⁻¹ and then scaled together

Lumi Thresholds -- lybb,yybb,llbb,WW,WWW As They Are

Width of bands given by systematic errors on/off

OHIO SEATE ected Signal Significance CDF+DØ vs Luminosity

m_H=115 GeV assumed

CDF sees Z→bb decays in Run 2

Double b-tagged events with no extra jets and a back-to-back topology are the signal-enriched sample: $E_{t}^{3}<10~GeV$, $\Delta\Phi_{12}>3$

Among 85,784 selected events CDF finds 3400±500 Z→bb decays

- signal size ok
- resolution as expected
- jet energy scale ok!

This is a proof that we are in business with small S/N jet resonances!

CDF expects to stringently constrain the b-jet energy scale with this dataset

